189 research outputs found

    First Law of Black Rings Thermodynamics in Higher Dimensional Dilaton Gravity with p + 1 Strength Forms

    Full text link
    We derive the first law of black rings thermodynamics in n-dimensional Einstein dilaton gravity with additional (p+1)-form field strength being the simplest generalization of five-dimensional theory containing a stationary black ring solution with dipole charge. It was done by means of choosing any cross section of the event horizon to the future of the bifurcation surface.Comment: 6 pages, to be published in Phys.Rev.D1

    Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion-dilaton gravity

    Get PDF
    We derive general formulae for the first order variation of the ADM mass, angular momentum for linear perturbations of a stationary background in Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the heterotic string theory. All these variations were expressed in terms of the perturbed matter energy momentum tensor and the perturbed charge current density. Combining these expressions we reached to the form of the {\it physical version} of the first law of black hole dynamics for the stationary black holes in the considered theory being the strong support for the cosmic censorship.Comment: 8 pages, Revte

    Uniqueness Theorem for Generalized Maxwell Electric and Magnetic Black Holes in Higher Dimensions

    Full text link
    Based on the conformal energy theorem we prove the uniqueness theorem for static higher dimensional electrically and magnetically charged black holes being the solution of Einstein (n-2)-gauge forms equations of motion. Black hole spacetime contains an asymptotically flat spacelike hypersurface with compact interior and non-degenerate components of the event horizon.Comment: 7 pages, RevTex, to be published in Phys.Rev.D1

    Physical Process Version of the First Law of Thermodynamics for Black Holes in Higher Dimensional Gravity

    Full text link
    The problem of physical process version of the first law of black hole thermodynamics for charged rotating black hole in n-dimensional gravity is elaborated. The formulae for the first order variations of mass, angular momentum and canonical energy in Einstein (n-2)-gauge form field theory are derived. These variations are expressed by means of the perturbed matter energy momentum tensor and matter current density.Comment: 6 pages, REVTEX, to be published in Phys.Rev.D1

    First Law of Black Saturn Thermodynamics

    Full text link
    The physical version and equilibrium state version of the first law of thermodynamics for a black object consisting of n-dimensional charged stationary axisymmetric black hole surrounded by aa black rings, the so-called black Saturn was derived. The general setting for our derivation is n-dimensional dilaton gravity with p + 1 strength form fields.Comment: 9 pages, RevTex, to be published in Phys.Rev.D1

    Evolution of a Self-interacting Scalar Field in the spacetime of a Higher Dimensional Black Hole

    Full text link
    In the spacetime of n-dimensional static charged black hole we examine the mechanism by which the self-interacting scalar hair decay. It is turned out that the intermediate asymptotic behaviour of the self-interacting scalar field is determined by an oscilatory inverse power law. We confirm our results by numerical calculations.Comment: RevTex, 6 pages, 8 figures, to be published in Phys.Rev.D1

    A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric

    Get PDF
    A key result in the proof of black hole uniqueness in 4-dimensions is that a stationary black hole that is ``rotating''--i.e., is such that the stationary Killing field is not everywhere normal to the horizon--must be axisymmetric. The proof of this result in 4-dimensions relies on the fact that the orbits of the stationary Killing field on the horizon have the property that they must return to the same null geodesic generator of the horizon after a certain period, PP. This latter property follows, in turn, from the fact that the cross-sections of the horizon are two-dimensional spheres. However, in spacetimes of dimension greater than 4, it is no longer true that the orbits of the stationary Killing field on the horizon must return to the same null geodesic generator. In this paper, we prove that, nevertheless, a higher dimensional stationary black hole that is rotating must be axisymmetric. No assumptions are made concerning the topology of the horizon cross-sections other than that they are compact. However, we assume that the horizon is non-degenerate and, as in the 4-dimensional proof, that the spacetime is analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3: numerous minor revision
    • …
    corecore